Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38105982

RESUMO

UBE2N, a Lys63-ubiquitin conjugating enzyme, plays critical roles in embryogenesis and immune system development and function. However, its roles in adult epithelial tissue homeostasis and pathogenesis are unclear. We generated conditional mouse models that deleted Ube2n in skin cells in a temporally and spatially controlled manner. We found that Ube2n-knockout (KO) in the adult skin keratinocytes induced a range of inflammatory skin defects characteristic of psoriatic and actinic keratosis. These included eczematous inflammation, epidermal and dermal thickening, parakeratosis, and increased immune cell infiltration, as well as signs of edema and blistering. Single cell transcriptomic analyses and RT-qPCR showed that Ube2n KO keratinocytes expressed elevated myeloid cell chemo-attractants such as Cxcl1 and Cxcl2 and decreased the homeostatic T lymphocyte chemo-attractant, Ccl27a. Consistently, the infiltrating immune cells of Ube2n-KO skin were predominantly myeloid-derived cells including neutrophils and M1-like macrophages that were highly inflammatory, as indicated by expression of Il1ß and Il24. Pharmacological blockade of the IL-1 receptor associated kinases (IRAK1/4) alleviated eczema, epidermal and dermal thickening, and immune infiltration of the Ube2n mutant skin. Together, these findings highlight a key role of keratinocyte-UBE2N in maintenance of epidermal homeostasis and skin immunity and identify IRAK1/4 as potential therapeutic target for inflammatory skin disorders.

2.
Int J Biol Macromol ; 245: 125215, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285880

RESUMO

Incidence of various cancers including melanoma continues to rise worldwide. While treatment options have expanded in the recent years, the benefit of these treatments suffer from short period of duration for many patients. Hence, new treatment options are highly desired. Here, we propose a method combining a Dextran/reactive-copolymer/AgNPs nanocomposite and a harmless visible light approach to obtain a plasma substitute carbohydrate-based nanoproduct (D@AgNP) that shows strong antitumor activity. Light-driven polysaccharide-based nanocomposite provided essential conditions for extra small (8-12nm) AgNPs capping with subsequent specific self-assembly into spherical-like cloud nanostructures. Obtained biocompatible D@AgNP are stable over six months at room temperature and demonstrated absorbance peak at 406 nm. New formulated nanoproduct revealed efficient anticancer properties against A375 with IC50 0.0035 mg/mL following 24-h incubation; complete cell death is achieved at 0.001 mg/mL and 0.0005 mg/mL by 24- and 48-h time points, respectively. SEM examination shows that D@AgNP altered the shape of the cell structure and damaged the cell membrane. TEM finding shows that D@AgNP are mostly localized at vesicles such as the endosomes, lysosomes and mitochondria. It is anticipated that the introduced new method serves as the cornerstone for improving the generation of biocompatible hydrophilic carbohydrate-based anticancer drugs.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nanocompostos , Humanos , Dextranos , Nanopartículas Metálicas/química , Antineoplásicos/farmacologia , Luz , Antibacterianos/química
3.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364077

RESUMO

To combat emerging antimicrobial-resistant microbes, there is an urgent need to develop new antimicrobials with better therapeutic profiles. For this, a series of 13 new spiropyrrolidine derivatives were designed, synthesized, characterized and evaluated for their in vitro antimicrobial, antioxidant and antidiabetic potential. Antimicrobial results revealed that the designed compounds displayed good activity against clinical isolated strains, with 5d being the most potent (MIC 3.95 mM against Staphylococcus aureus ATCC 25923) compared to tetracycline (MIC 576.01 mM). The antioxidant activity was assessed by trapping DPPH, ABTS and FRAP assays. The results suggest remarkable antioxidant potential of all synthesized compounds, particularly 5c, exhibiting the strongest activity with IC50 of 3.26 ± 0.32 mM (DPPH), 7.03 ± 0.07 mM (ABTS) and 3.69 ± 0.72 mM (FRAP). Tested for their α-amylase inhibitory effect, the examined analogues display a variable degree of α-amylase activity with IC50 ranging between 0.55 ± 0.38 mM and 2.19 ± 0.23 mM compared to acarbose (IC50 1.19 ± 0.02 mM), with the most active compounds being 5d, followed by 5c and 5j, affording IC50 of 0.55 ± 0.38 mM, 0.92 ± 0.10 mM, and 0.95 ± 0.14 mM, respectively. Preliminary structure-activity relationships revealed the importance of such substituents in enhancing the activity. Furthermore, the ADME screening test was applied to optimize the physicochemical properties and determine their drug-like characteristics. Binding interactions and stability between ligands and active residues of the investigated enzymes were confirmed through molecular docking and dynamic simulation study. These findings provided guidance for further developing leading new spiropyrrolidine scaffolds with improved dual antimicrobial and antidiabetic activities.


Assuntos
Anti-Infecciosos , Antioxidantes , Antioxidantes/química , Simulação de Acoplamento Molecular , Quinoxalinas , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Antibacterianos/química , Anti-Infecciosos/farmacologia , Relação Estrutura-Atividade , alfa-Amilases/metabolismo
4.
Sci Rep ; 11(1): 13258, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168242

RESUMO

The current study is aimed at preparing light-driven novel functional AgNPs- bio-hydrogel and evaluating anticancer potency against human melanoma cells. With an average size of 16-18 nm, the hydrogel nano-silver particle composite (AgNPs@C_MA_O) was synthesized using a soft white LED approach and analyzed by UV-Vis, DLS, FTIR, X-ray, SEM-EDX and TEM techniques. The anticancer activity of the obtained novel functionalized AgNPs@C_MA_O was tested in-vitro in the A375 melanoma cell line. Dose-response analysis showed that AgNPs at 0.01 mg/mL and 0.005 mg/mL doses reduced the viability of A375 cells by 50% at 24 and 48-h time-points, respectively. A375 cells treated with AgNPs@C_MA_O for 24 h at IC50 displayed abnormal morphology such as detachment edges and feet, shrinkage, membrane damage, and the loss of contact with adjacent cells. Our work is the first study showing that non-ionizing radiation mediated biofunctionalized AgNPs have an anti-tumoral effect at such a low concentration of 0.01 mg/mL. Our approach of using harmless wLED increased synergy between soft biopolymer compounds and AgNPs, and enhanced anticancer efficiency of the AgNPs@C_MA_O biohydrogel. Ultimately, the AgNPs accessed through the use of the wLED approach in colloidal syntheses can open new applications and combinatorial advanced cancer treatments and diagnostics.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Hidrogéis , Concentração Inibidora 50 , Luz , Nanopartículas Metálicas/efeitos da radiação , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...